
Designing Interface Objects

Presentation Layer Architecture

Remember: 3-tier architecture (presentation-
boundary, business logic-control, database-entity)

Remember:
Logical
(layers) versus
Physical(tier)
architecture

UI Prototyping (1)

Prototype: a model that looks and to some
extent behaves like the finished product, but
is lacking certain features
Horizontal versus Vertical prototypes

Layering versus partitioning
Throwaway prototypes (visual programming
environments)

Outside in development: blurring the separation!

UI Prototyping (2)

Remember: style guides

Designing UI Classes (1)

Check Campaign
Budget UI

Check Campaign
Budget

Campaign Advert

Designing UI Classes (2)

Designing UI Classes (3)

Designing UI Classes (4)

CheckCampaignBudgetUI

- clientLabel : Label
- campaignLabel : Label
- budgetLabel : Label
- checkButton : Button
- closeButton : Button
- budgetTextField : TextField
- clientChoice : Choice
- campaignChoice : Choice

AWT Agate User
Interface«import»

Designing UI Classes (5)

3

1

2

1

1

1

2

1

AWT::Dialog

CheckCampaignBudgetUI

AWT::Label AWT::Button AWT::TextField AWT::Choice

Designing UI Interactions (1)

*getCost()

Campaign
Manager

:Client :Advert:Campaign

listCampaigns() *getCampaignDetails()

checkCampaignBudget()

getName()

getOverheads()

Designing UI Interactions (2)

Check
Campaign
Budget UI

Check
Campaign

Budget

Campaign Advert

List
Campaigns

List Clients Client

Designing UI Interactions (3)

Campaign
Manager :CheckCampaign

BudgetCheckCampaignBudget()

:CheckCampaign
BudgetUI

ccbUI := Check
Campaign
BudgetUI(this)

:ListClients
lc := ListClients()

listAllClients(ccbUI)

*addClientName(name)

enable()

Designing UI Interactions (4)

«interface»
ClientLister

+ addClientName(String)

CheckCampaignBudgetUI

- clientLabel : Label
- campaignLabel : Label
- budgetLabel : Label
- checkButton : Button
- closeButton : Button
- budgetTextField : TextField
- clientChoice : Choice
- campaignChoice : Choice

«use»

ListClients

+ enable()+ listAllClients(ClientLister)

Designing UI Interactions (5)

:Client:ListClients
listAllClients(cl)

cl:ClientLister

aClient := getNextClient()

name := getName()

* [while more clients]

:Client:ListClients
listAllClients(cl)

:ClientLister

aClient := getNextClient()

name := getName()

* [while more clients]

addClientName(name)

Designing UI Interactions (6)

Campaign
Manager :CheckCampaign

Budget

select client

:CheckCampaign
BudgetUI

:ListCampaignslc := ListCampaigns()

listCampaigns(ccbUI, aClient)

*addCampaignName(name)

clientSelected()
aClient := getSelectedClient()

Designing UI Interactions (7)

Campaign
Manager :CheckCampaign

Budget
:CheckCampaign

BudgetUI

[evt.source =
clientChoice]
clientSelected()

clientChoice
:Choice

select client itemState
Changed(evt)

Designing UI Interactions (8)

Campaign
Manager :CheckCampaign

Budget

select client

:CheckCampaign
BudgetUI

:ListCampaignslc := ListCampaigns()

listCampaigns(ccbUI, aClient)

*addCampaignName(name)

clientSelected()

aClient := getSelectedClient()

clearAllCampaignNames()

Designing UI Interactions (9)

Campaign
Manager :CheckCampaign

Budget

select campaign

:CheckCampaign
BudgetUI

campaignSelected()

enableCheckButton()

checkCampaignBudget()

check budget

*getCost()

:Advert:Campaign

getOverheads()

getCampaignSelected()

checkCampaignBudget()

setBudget()

Designing UI Interactions (10)

«interface»
ClientLister

+ addClientName(String)
+ clearAllClientNames()
+ removeClientName(String)

CheckCampaignBudgetUI

- clientLabel : Label
- campaignLabel : Label
- budgetLabel : Label
- checkButton : Button
- closeButton : Button
- budgetTextField : TextField
- clientChoice : Choice
- campaignChoice : Choice

«use»

ListCampaigns

+ enable()
+ enableCheckButton()
+ getSelectedClient()
+ getSelectedCampaign()
+ setBudget(Currency)

+ listAllCampaigns(CampaignLister)
+ listCampaigns(CampaignLister, Client)

«interface»
CampaignLister

+ addCampaignName(String)
+ clearAllCampaignNames()
+ removeCampaignName(String)

ListClients

+ listAllClients(ClientLister)

«use»

«interface»
java::awt::event::ItemListener

+ itemStateChanged(ItemEvent evt)

Designing UI Interactions (11)

Class Diagram Revision

UI Modelling with Statecharts
(1)

Bottom-up approach
Modelling components as
statecharts
Assemble the statecharts into
a complete model

Top-down approach
Successive introduction of
nested states

Error prevention is
preferable to error
detection and correction!

UI Modelling with Statecharts
(2)

Five tasks
Describe the high-level requirements and main
user tasks
Describe the user interface behaviour
Define user interface rules
Draw the statechart (and successively refine it)
Prepare an event action table

UI Modelling with Statecharts
(3)

Describe the high-level requirements and main user
tasks

The requirement here is that the users must be able to
check whether the budget for an advertising campaign
has been exceeded or not. This is calculated by summing
the cost of all the adverts in a campaign, adding a
percentage for overheads and subtracting the result from
the planned budget. A negative value indicates that the
budget has been overspent. This information is used by a
campaign manager.

UI Modelling with Statecharts
(4)

Describe the user interface behaviour
The client dropdown displays a list of clients. When a
client is selected, their campaigns will be displayed in the
campaign dropdown.
The campaign dropdown displays a list of campaigns
belonging to the client selected in the client dropdown.
When a campaign is selected the check button is enabled.
The budget textfield displays the result of the calculation to
check the budget.
The check button causes the calculation of the budget
balance to take place.
The close button closes the window and exits the use case.

UI Modelling with Statecharts
(5)

Define user interface rules
The client dropdown has constant behaviour. Whenever a client is selected, a list of
campaigns is loaded into the campaign dropdown
The budget textfield is initially empty. It is cleared whenever a new client is selected
or a new campaign is selected. It is not editable
The close button may be pressed at any time to close the window

The campaign dropdown is initially disabled. No campaign can be selected until a
client has been selected. Once it has been loaded with a list of campaigns it is enabled
The check button is initially disabled. It is enabled when a campaign is selected. It is
disabled whenever a new client is selected

The window is entered from the main window when the Check Campaign
Budget menu item is selected
When the close button is clicked, an alert dialogue is displayed. This asks ‘Close
window? Are you sure?’ and displays two buttons labelled ‘OK’ and ‘Cancel’. If
‘OK’ is clicked the window is exited; if ‘Cancel’ is clicked then it carries on in the
state it was in before the close button was clicked

UI Modelling with Statecharts
(6)

Main Window

Check Budget
Window Alert Dialogue

checkCampaignBudget
MenuSelected()

closeButtonClicked()

‘OK’

‘Cancel’

UI Modelling with Statecharts
(7)

No Client
Selected Client Selected

clientSelected()

clientSelected()

Nested within the Check Budget Window state

UI Modelling with Statecharts
(8)

No Campaign
Selected

Campaign
Selected

campaignSelected()

campaignSelected()

Nested within the Client Selected state

UI Modelling with Statecharts
(9)

Blank Display
Result

checkButtonPressed()

checkButtonPressed()

Nested within the Campaign Selected state

Check Budget Window

2 Client Selected

3 No Campaign
Selected

4 Campaign Selected

campaignSelected()

campaignSelected()

5 Blank 6 Display
Result

checkButtonPressed()

checkButtonPressed()

1 No Client
Selected

clientSelected()

clientSelected()

Main Window 7 Alert Dialogue

checkCampaignBudget
MenuSelected() closeButtonClicked()

‘OK’ ‘Cancel’

H*

Check Budget Window

2 No Campaign
Selected

campaignSelected()

campaignSelected()

3 Blank 4 Display
Result

checkButtonPressed()

checkButtonPressed()

1 No Client
Selected

clientSelected()

clientSelected()

Main Window 5 Alert Dialogue

checkCampaignBudget
MenuSelected() closeButtonClicked()

‘OK’ ‘Cancel’

H*

UI Modelling with Statecharts
(12)

Revising the Interaction and
Class Diagrams (1)

Campaign
Manager :CheckCampaign

BudgetCheckCampaignBudget()

:CheckCampaign
BudgetUI

ccbUI := Check
Campaign
BudgetUI(this)

:ListClients
lc := ListClients()

listAllClients(ccbUI)

*addClientName(name)

enable()

Revising the Interaction and
Class Diagrams (2)

Campaign
Manager :CheckCampaign

BudgetCheckCampaignBudget()

:CheckCampaign
BudgetUI

ccbUI := Check
Campaign
BudgetUI(this)

:ListClients
lc := ListClients()

listAllClients(ccbUI)

*addClientName(name)

disableCheckButton()

enable()

disableCampaignList()

