Designing Interface Objects

Presentation Layer Architecture

¢ Remember: 3-tier architecture (presentation-
boundary, business logic-control, database-entity)

Logical design

The project team may be producing analysis and design models
that are independent of the hardware and software environment in
which they are to be implemented. For this reason, the entity
classes, which provide the functionality of the application, will not
include details of how they will be displayed.

Interface
~ independence

Even if display methods could be added to classes in the
application, it would not make sense to do so. Object instances of
any one class will be used in many different use cases: sometimes
their attributes will be displayed on screen, sometimes printed by a
printer. There will not necessarily be any standard layout of the
attributes that can be built into the class definition, so presentation
of the attributes is usually handled by another class.

Reuse

One of the aims is to produce classes that can be reused in
different applications. For this to be possible, the classes should
not be tied to a particular implementation environment or to a
particular way of displaying the attribute values of instances.

Remember:
Logical
(layers) versus
Physical(tier)
architecture

UI Prototyping (1)

¢ Prototype: a model that looks and to some
extent behaves like the finished product, but
1s lacking certain features

¢ Horizontal versus Vertical prototypes
s Layering versus partitioning

¢ Throwaway prototypes (visual programming
environments)
s Outside in development: blurring the separation!

UI Prototyping (2)

g’,ﬁ-theck Campaign Budget |
Client |‘r‘e|lnw Fartridge Jewelleny j
Campaign [Fashion Jewellery Magazine =l | . | CheckCampaignBudget M|
Client | | |SEalChI
Budget Surplus IEE.EUU-UU B campaion | | Search |

- faCientloks ——— EEE|
Check | Close | i : Clients

Guelph Industries
Harper Intemational

. Holborn Motors
&t Check Campaign Budget Mi=] E3 Lynch Property

Midland Events
Wild Green

H Edgbaston Cars :I Budget Surplus G ‘Yellow Partridge

Zeta Systems W

ﬂ Guelphlnduslri,as |£2,5|:ID.DEI
E Harper Intermational

E Halbarn Matars
a Lynch Property
EE Yellow Partridge
L Fashion

My lagaz =
IflIH Zrla Sustems | _}I_I Check Tl

Select

Remember: style guides

Designing UI Classes (1)

O O O O

Check Campaign Check Campaign Campaign Advert
Budget Ul Budget

O »

List Clients Client

Camanign F meian el iy MagE . - /‘L\ r/_ﬁ_\\].
LT E3500 00 l‘k_,_/) : : ; ;
ek 2 Check Check Campaign Advert
Campaign Campaign

Bucdget Ul Budget

List
Campaigns

Designing UI Classes (2)

O)

List Clients Client

g Tl
dalas Mad s

O Q

Roue

Check Campaign Campaign Advert
Budget

Check Campaign
Eudget L

)

List Campaigns

List Campaigns
Ul pag

Designing Ul Classes (3)

Dialog
(CheckCampaignBudgetUl ﬁ)
1 1 '
3 = | [. 2
{‘ Label ” Button :l* TextField :‘: Choice
h" -r-:v---;r.- -
Bud 2,50 \
_cneey | o |

Designing UI Classes (4)

= | CheckCampaignBudgetUI
Client |Ye|lananridgeJewellew j - CllentLabel Label
- campaignlLabel : Label
Campaign |FaahinnJewellewMagazine j = bUdgetLabel Label
- checkButton : Button
Budget Surplus |£2,snn.nn - gloge%l_,ll_ttO?F B|(ljJttQ|'n Field
- budgetTextField : TextFie
_Check | _Ciose | - clientChoice : Choice
- campaignChoice : Choice
| |
AWT Agate User

«import»
P port» Interface

Designing UI Classes (5)

AWT::Dialog

/)

CheckCampaignBudgetUI

k

k

Ti

k

AWT::Label

AWT::Button

AWT:: TextField

AWT::Choice

Designing Ul Interactions (1)

% :Client :Campaign :Advert

Campaign

Manager

— "getName() i

listCampaigns(2_ *getCampaignDetaiIs%

checkCampaignéudget() >_ *getCost()

getOverheads() >D

r

Designing Ul Interactions (2)

@,

List Cllents Client

-

: O @
Check Check Campaign Advert
Campaign Campaign
Budget Ul Budget

List
Campaigns

Designing Ul Interactions (3)

A

Campaign
ManZggr :CheckCampaign
- CheckCampaignBudget() S Budget
ccbUl := Check
:CheckCampaign | Campaign
BudgetUl | BudgetUl(this)

|

lc := ListClients()

ListClients

listAllClients(ccbUlI)

*addClientName(name)

enable()

X

Designing UI Interactions (4)

«interface»
ClientLister

+ addClientName(String)

N

i «use»

ListClients O

+ listAllClients(ClientLister)

CheckCampaignBudgetUl *O

- clientLabel : Label

- campaignlLabel : Label

- budgetLabel : Label

- checkButton : Button

- closeButton : Button

- budgetTextField : TextField
- clientChoice : Choice

- campaignChoice : Choice

+ enable()

Designing Ul Interactions (5)

listAllClients(cl)

ListClients

Client

:ClientLister

>_L

aClient := getNextClient()

name := getName()

g

addClientName(name)>D

NI 4

!

A

i+ [while more clients]

Designing Ul Interactions (6)

A

Campaign : .
Mana :CheckCampaign :CheckCampaign
ger
- BudgetUI Budget

select client >i

—

clientSelected()

aClient := getSelectedClient(
<

>_'_

p —_———

|

ListCampaigns

lc := ListCampaigns(

listCampaigns(ccbUI, aCIienL’

N

*addCampaignName(name)

X

Designing Ul Interactions (7)

A

Campaign
Manager clientChoice :CheckCampaign :CheckCampaign
_ :Choice BudgetUI Budget
select client itemState [evt.source = I
'] Changed(evt) . clientChoice]

’H clientSelected()

A

Campaign
Manager | :CheckCampaign
— BudgetUl
select client _

Designing Ul Interactions (8)

clientSelected()

:CheckCampaign

Budget

>l

aClient := getSelectedClient()

}4

clearAllCampaignNames()

:ListCampaigns

Ic := ListCampaigns()
>

}4

!

listCampaigns(ccbUI, aClient) |

*addCampaignName(name)

T

Designing Ul Interactions (9)

A

Campaign : .
Manager :CheckCampaign :CheckCampaign

_ BudgetUI Budget

:Campaign :Advert

select campaig

n |
» campaignSelected()

ET enableCheckButton()
check budget
>J_

checkCampaignBudget() >

[----1

< getCampaignSelected()
D checkCampaignBudget()

*getCost()

getOverheads()

setBudget()

Designing Ul Interactions (10)

ListCampaigns ©) «interface»

java::awt::event::ltemListener

+ listAllCampaigns(CampaignLister)

+ listCampaigns(CampaignLister, Client) | + itemStateChanged(ltemEvent evt

| «use» A

\VA

«interface»
CampaignLister

+ addCampaignName(String) heck ianB UrO
+ clearAllCampaignNames() < """ CheckCampaignBudgetV
+ removeCampaignName(String) - clientLabel : Label
: - campaignLabel : Label
«interface» - budgetLabel : Label
ClientLister - checkButton : Button
: : % """"""""" - closeButton : Button
+ addClientName(String) - budgetTextField : TextField
+ clearAllClientNames() - clientChoice : Choice
+ removeClientName(String) - campaignChoice : Choice
«use» + enable()
PN + enableCheckButton()
ListClients O + getSelectedClient()
+ listAllClients(ClientLister) + getSelectedCampaign()

—+setBudget(Currency)————

Designing Ul Interactions (11)

:Report clients Client
> AllClients —_—
1: reportAllClients() 3: * [while more clients]
aClient := getNextClient()
2: aStream := open()
6: close() l aClient «local» Client
_’ -
4: printOnStream(aStream)
aStream «local»
-OPStream |2Stream «parameter»
.‘_
. 5: print(details) :Report clients| .-,
{transient} . AllClients :Client
1: reportAliClients() 3: * [while more clients] [
aClient := getNextClient()
2: aStream := open()
8: close() Client
St local 4: printReport
‘OPStream |2o1eam «local» (aClient, aStream) aClient
«parameter»
{transient) | @Stream P
«parameter» :ReportAll
P — Clients N

7: print(formattedValues)

Formatter 5: getDetails()

i 6: format()

Class Diagram Revision

java::AWT::Dialog

A

LookupDialog

PrintDialog

- selectionList : List
- cancelButton : Button
- selectButton : Button

+ getSelected()

- printButton : Button

- cancelButton : Button

- mode : CheckboxGroup
- landscape : Checkbox
- portrait : Checkbox

+ print()
+ getMode()

UI Modelling with Statecharts
(1)

¢ Bottom-up approach
s Modelling components as

:g Check Campaign Budget |

statecharts
Client vellow Partridae Jewellery =l = Assemble the statecharts into
a complete model
Campaidn Fashion Jewellery Magazine j * TOp-dOWH approach
Budget Surplus | £2,500.00 s Successive introduction of
nested states
_Check | _Close | ¢ Error prevention 1s

preferable to error
detection and correction!

UI Modelling with Statecharts
(2)

¢ Five tasks

s Describe the high-level requirements and main
user tasks

s Describe the user interface behaviour
s Define user interface rules

s Draw the statechart (and successively refine it)

s Prepare an event action table

UI Modelling with Statecharts
(3)

+ Describe the high-level requirements and main user
tasks

= The requirement here 1s that the users must be able to
check whether the budget for an advertising campaign
has been exceeded or not. This is calculated by summing
the cost of all the adverts in a campaign, adding a
percentage for overheads and subtracting the result from
the planned budget. A negative value indicates that the
budget has been overspent. This information is used by a
campaign manager.

UI Modelling with Statecharts
(4)

¢ Describe the user interface behaviour

The client dropdown displays a list of clients. When a
client 1s selected, their campaigns will be displayed in the
campaign dropdown.

The campaign dropdown displays a list of campaigns
belonging to the client selected in the client dropdown.
When a campaign is selected the check button 1s enabled.

The budget textfield displays the result of the calculation to
check the budget.

The check button causes the calculation of the budget
balance to take place.

The close button closes the window and exits the use case.

UI Modelling with Statecharts
(5)

¢ Define user interface rules

The client dropdown has constant behaviour. Whenever a client is selected, a list of
campaigns is loaded into the campaign dropdown

The budget textfield is initially empty. It is cleared whenever a new client is selected
or a new campaign is selected. It is not editable

The close button may be pressed at any time to close the window

The campaign dropdown is initially disabled. No campaign can be selected until a
client has been selected. Once it has been loaded with a list of campaigns it is enabled

The check button is initially disabled. It is enabled when a campaign is selected. It is
disabled whenever a new client is selected

The window 1s entered from the main window when the Check Campaign
Budget menu item is selected

When the close button is clicked, an alert dialogue is displayed. This asks ‘Close
window? Are you sure?’ and displays two buttons labelled ‘OK’ and ‘Cancel’. If
‘OK 1s clicked the window 1s exited; if ‘Cancel’ is clicked then it carries on in the
state it was in before the close button was clicked

UI Modelling with Statecharts

(6)

v v |

checkCampaignBudget
MenuSelected() ‘OK’
closeButtonClicked
Check Budget W O (Alert Dialogue
Window L

‘Cancel’

UI Modelling with Statecharts
(7)

Nested within the Check Budget Window state

!

_ clientSelected()
No Client W (Client Selected
Selected J L

clientSelected()

UI Modelling with Statecharts
(8)

Nested within the client Selected state

)

[No Campaign W campalgnSeIected()(Campaign

Selected J L Selected

campaignSelected()

UI Modelling with Statecharts
9)

Nested within the Campaign Selected state

!

checkButtonPressed() :
Blank | " Display
J L Result

checkButtonPressed()

‘0K’ (

Main Window }

checkCampaignBudget
MenuSelected()

L

W ‘Cancel’

7 Alert Dialogue J

closeButtonClicked()

-

Check Budget ggindow

1 No Client
Selected

clientSelected()

)

clientSelected()

-

2 Client Selet

3 No Campaign
Selected

campaignSelected()

s

campaignSelected()
\
4 Campaign Selected
W checkButtonPressed() (_
5 Blank J L 6RD(;SSE'EV
checkButtonPressed()
J

~

‘OK’ (

Main Window }

checkCampaignBudget
MenuSelected()

X

W ‘Cancel’
5 Alert Dialogue J

closeButtonClicked()

-

Check Budgﬂindow

1 No Client
Selected

clientSelected()

)

clientSelected()

/ t \
2 No Campaign
Selected campaignSelected()
campaignSelected()
/ t \
W checkButtonPressed() (4 Disol W
isplay
3 Blank J L Result

checkButtonPressed()

- ~ 4 -

(12)

UI Modelling with Statecharts

Current | Event Action Me xt
State State
— Check Campaign Budget menu itern | Display CheckCampaignBudgetl]. 1
selected. Load client dropdown. Disable
campaign dropdown. Disable check
biutton. Enable window.
1 Client selected. Clear campaign dropdown. Load 2
campaign dropdown. Enable
campaign dropdown.
2,3, 4 Client selected. Clear campaign dropdown. Load 2
campaign dropdown. Clear budget
textfield. Disable check button.
2 Carmpaign selected. Clear budget textfield. Enable check 3
biutton.
3 Check button pressed. Calculate budoget. Display result. 4
4,4 Campaign selected. Clear budget textfield. 3
4 Check button pressed. Calculate budget. Display result. 4
1,2,3 4 Close button clicked. Display alert dialogue. 9
7 Ok button clicked. Close alert dialogue. Close window. —
5] Cancel button clicked. Close alert dialogue. H*

Revising the Interaction and
Class Diagrams (1)

A

Campaign

Manager :CheckCampaign
- CheckCampaignBudget() Budget
ccbUl := Check

:CheckCampaign | Campaign

BudgetU| . BudgetUI(this)

U Ic := ListClients() Listlients

listAllClients(ccbUlI)

*addClientName(name)

enable() X

Revising the Interaction and
Class Diagrams (2)

Campaign
Manager :CheckCampaign
— CheckCampaignBudget() Budget

ccbUl := Check
:CheckCampaign Campaign
BudgetUI y BudgetUI(this)

U. o = ListClients() | “Hstelients

listAllClients(ccbUI) »I

*addClientName(name)

D, enable() X

disableCampaignList()

-1

disableCheckButton()

=

